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Abstract

Optimizing large-scale nonconvex problems, common in machine learning, de-
mands balancing rapid convergence with computational efficiency. First-order
(FO) stochastic methods like SVRG provide fast convergence and good gener-
alization but incur high costs due to full-batch gradients in large models. Con-
versely, zeroth-order (ZO) algorithms reduce this burden using estimated gradi-
ents, yet their slow convergence in high-dimensional settings limits practicality.
We introduce VAMO (VAriance-reduced Mixed-gradient Optimizer), a stochastic
variance-reduced method combining FO mini-batch gradients with lightweight ZO
finite-difference probes under an SVRG-style framework. VAMO’s hybrid design
uses a two-point ZO estimator to achieve a dimension-agnostic convergence rate of
O(1/T +1/b), where T is the number of iterations and b is the batch-size, surpass-
ing the dimension-dependent slowdown of purely ZO methods and significantly
improving over SGD’s O(1/

√
T ) rate. Additionally, we propose a multi-point ZO

variant that mitigates the O(1/b) error by adjusting number of estimation points to
balance convergence and cost, making it ideal for a whole range of computationally
constrained scenarios. Experiments including traditional neural network training
and LLM finetuning show VAMO outperforms established FO and ZO methods,
offering a faster, more flexible option for improved efficiency.

1 Introduction

First-order (FO) optimization methods, particularly Stochastic Gradient Descent (SGD), have been
applied in training a wide range of machine learning models. For large-scale problems, variance-
reduced (VR) techniques, such as the Stochastic Variance Reduced Gradient (SVRG) algorithm
[1, 2, 3], offer significant improvements, achieving faster convergence rates, O(1/T ), compared
to the rate of SGD O(1/

√
T ) [2]. However, in recent years, extremely large models—such as

Large Language Models (LLMs) with billions of parameters—have become increasingly prevalent in
machine learning. When training these models, traditional variance reduction methods like SVRG
face a major challenge: they require periodically computing the full gradient over the entire dataset,
which is often impractical for such large-scale models [2]. For LLMs, this step results in prohibitive
computational and memory overhead, severely hindering efficient training of large models.

Zeroth-order (ZO) optimization methods present an appealing alternative in this context, as they
completely bypass the need for explicit gradient calculations, estimating gradients using only function
value queries [4, 5]. This gradient-free characteristic drastically reduces per-iteration computational
cost and memory footprint, making ZO methods attractive for resource-constrained training of LLMs
[6, 7]. Despite these advantages, ZO methods typically exhibit slower theoretical convergence rates
than FO methods and, critically, often suffer from a strong dependence on the model dimension
d [4, 8]. Given the vast dimensionality of modern LLMs, this dependence can render pure ZO

Preprint. Under review.



approaches impractically slow. This creates a clear dilemma for large model training: FO methods
offer desirable convergence, but suffer from high gradient costs, while ZO methods are cheaper per
step but often too slow and scale poorly with model size. This naturally raises the question: can we
devise a hybrid strategy that combines the strengths of both FO and ZO methods, thereby overcoming
their individual limitations for efficient training of large models?

In this work, we propose VAMO (VAriance-reduced Mixed-gradient Optimizer), a new adaptive
hybrid algorithm specifically designed to navigate this dilemma in large-scale non-convex opti-
mization. Our approach integrates FO and ZO techniques within the SVRG framework, aiming
to maintain SVRG’s fast convergence while substantially mitigating its computational burden. A
major breakthrough here is the replacement of the prohibitively expensive full FO gradient ∇f(x̂)

at SVRG checkpoints with an efficient ZO gradient estimate ∇̂f(x̂), which significantly reduces
computation. This leads to a convergence rate of O(1/T + 1/b), significantly outperforming both
ZO methods and FO-SGD, matching the rate of FO-SVRG only with an additional complexity of
O(1/b), which we could further decrease by increasing computational budget. The adaptability of
VAMO is then enhanced through several key innovations proposed in this work. First, we introduce a
novel mixing coefficient into the update rule, which enables fine-grained control over the balance
between the FO stochastic gradient and the ZO variance correction term. This mechanism allows
practitioners to optimize performance based on the specific characteristics of the problem and the
available computational budget. Secondly, we propose a configurable ZO gradient estimation strategy
for the checkpoint gradient ∇̂f(x̂), which offers a choice between the standard two-point estimator
and a more robust multi-point estimator. This flexibility introduces an additional degree of control,
enabling users to balance the trade-off between estimation accuracy and the number of function eval-
uations. Together, these innovations make VAMO highly adaptable to a wide range of optimization
scenarios. Crucially, despite this hybrid and adaptive nature, our gradient estimator is designed to
maintain the unbiased property inherent to FO-SVRG, distinguishing our method from many biased
ZO approaches and facilitating a rigorous convergence analysis for stronger theoretical guarantees.

2 Related Work

First-order optimization. While Stochastic Gradient Descent (SGD) [9] remains a foundational
algorithm in machine learning, its convergence can be slow in large-scale settings due to high gradient
variance [3]. Addressing this, variance-reduced (VR) methods [10], notably SVRG [1, 2, 3] and
SAGA [11], represent a significant theoretical advancement. These algorithms reduce variance by
leveraging gradients from past iterates or periodically computing full-batch gradients and achieve
faster convergence rates (e.g., linear convergence under certain assumptions) compared to SGD [2, 3].
Despite these theoretical benefits, a primary practical limitation is the substantial computational and
memory cost associated with full-batch gradients. This overhead can become prohibitive as model
sizes and datasets scale. Another common extension of SGD is the use of adaptive step-sizes, as
in ADAM [12] and Adagrad [13]. However, the convergence properties of these adaptive methods
remain debated and can be highly sensitive to hyper-parameter choices [14, 15, 16].To provide a
clearer and more interpretable comparison, we focus on standard baselines such as SGD and SVRG,
which better isolate the effects of our proposed modifications. Notably, our algorithm can be readily
combined with adaptive step-size techniques if needed.

Zeroth-order optimization. Zeroth-order (ZO) optimization methods approximate gradients using
function evaluations instead of explicit gradient computation, offering reduced computational and
memory overhead [17]. This advantage makes them attractive for large-scale problems like large
language model fine-tuning [6, 7, 17, 18, 19], and their convergence properties are theoretically
studied [4, 5, 8, 20]. However, ZO convergence rates often degrade with increasing problem dimension
d, which makes them slow for high-dimensional models compared to FO methods [5, 21, 22]. Even
recent applications like MeZO [6] and MeZO-SVRG [7] are constrained by this dimensionality
dependence. While ZO is crucial for black-box scenarios [23, 24], tasks like fine-tuning often have
accessible gradients whose computation is merely expensive. This motivates our hybrid approach,
which aims to combine ZO’s efficiency with FO’s faster convergence by strategically incorporating
both types of gradient information, thereby avoiding the high computational cost associated with pure
FO methods, while also mitigating the performance degradation that pure ZO methods often suffer in
high-dimensional settings.
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Hybrid Zeroth-Order and First-Order Algorithms. Combining the strengths of FO and ZO
optimization is a relatively recent and underexplored direction, with limited established theoretical
analysis. The goal is to enjoy faster convergence while using less computational resource via ZO
techniques [17, 25]. Early explorations include schemes like applying ZO to shallower model layers
and FO to deeper ones [17], or concurrently computing and combining FO-SGD and ZO-SGD
updates at each step, as in Addax [25]. However, these initial hybrid approaches may have limitations;
for instance, the theoretical convergence rate of Addax still exhibits dependence on the problem
dimension d [25], hindering its effectiveness for large-scale models. Furthermore, many early hybrid
strategies often lack explicit mechanisms to adaptively tune the balance between FO accuracy and
ZO query efficiency in response to varying computational resources or specific problem demands.
The scarcity of hybrid strategies that offer both theoretical convergence and controlled adaptability
underscores the novelty of our work.

To contextualize our contributions, Table 1 summarizes the convergence rates and computational
complexities of our proposed methods, referred to as VAMO and VAMO (multi-point) in the table
alongside several FO and ZO algorithms. For ZO methods, ZO-SVRG is listed with a complexity
of O(nS + bT ) function queries. Among FO methods, FO-SGD has the lowest computational cost
O(bdT ) but also exhibits the slowest convergence (O(1/

√
T )). FO-SVRG improves convergence to

O(1/T ) but increases the cost to O(ndS + bdT ) due to full gradient computations. Our proposed
VAMO maintains a complexity of O(nS + bdT ), similar to ZO-SVRG in terms of nS but replacing
the ndS full gradient cost of FO-SVRG with a cheaper nS ZO estimation cost for checkpoints, while
achieving a fast O(1/T + 1/b) convergence rate. This makes its checkpoint cost significantly slower
than FO-SVRG, especially when d is large. The VAMO (multi-point) variant has a complexity of
O(qnS+bdT ). Here, increasing q (the number of ZO sampling directions) leads to higher complexity
for checkpoint estimation but also improves the convergence rate to O(1/T + 1

b (1−
q
d )

2), reducing
the O(1/b) error term and making its performance more comparable to FO-SVRG, particularly if
q ≪ d. This demonstrates that our proposed methods provide a flexible and often more efficient
trade-off between computational cost and convergence performance compared to existing pure FO
or ZO approaches. Our work further develops such an adaptive hybrid approach by specifically
integrating ZO estimation within the SVRG structure, aiming to reduce the full-gradient cost while
preserving strong convergence guarantees independent of dimensionality.

Table 1: Summary of convergence rate and computational complexity of our proposals given T
total iterations. n represents the total number of samples or component functions, d is the problem
dimension (number of parameters), b denotes the mini-batch size, S is the number of epochs or outer
loops (for SVRG-type methods, T ≈ Sm where m is the number of inner iterations per epoch), and
q signifies the number of query directions used for ZO estimation.

Method Grad. estimator Stepsize Convergence rate (worst
case as b < n)

Computational complex-
ity

ZO-SVRG Gradient Estimate O
(
1
d

)
O
(

d
T
+ 1

b

)
O(nS + bT )

FO-SGD Explicit Gradient O
(

1√
T

)
O
(

1√
T

)
O(bdT )

FO-SVRG Explicit Gradient O (1) O
(

1
T

)
O(ndS + bdT )

VAMO Mixed Gradient O (1) O
(

1
T
+ 1

b

)
O(nS + bdT )

VAMO(multi-
point)

Mixed Gradient O (1) O
(

1
T
+ 1

b
(1− q

d
)2
)

O(qnS + bdT )

3 Preliminaries

We consider the following nonconvex finite-sum optimization problem:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where {fi(x)}ni=1 are n individual nonconvex cost functions. Note that Eq. (1) is the generic form
of many machine learning problems such as training neural networks, since this is the natural form
arising from empirical risk minimization (ERM). Next we introduce assumptions we will make
throughout the paper and provide the background of ZO gradient estimate.
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3.1 Assumptions

Throughout this paper, we make the following standard assumptions on the objective function
components fi(x). Let d be the dimension of the optimization variable x.

Assumption 1 (L-smooth). Each function fi : Rd → R is L-smooth for i ∈ [n] := {1, 2, . . . , n}.
That is, for any x,y ∈ Rd, there exists a constant L > 0 such that:

∥∇fi(x)−∇fi(y)∥2 ≤ L∥x− y∥2

This also implies that the full objective function f(x) = 1
n

∑n
i=1 fi(x) is L-smooth.

Assumption 2 (Bounded Variance). The variance of the stochastic gradients is bounded. Specifically,
for any x ∈ Rd, there exists a constant σ2 ≥ 0 such that:

1

n

n∑
i=1

∥∇fi(x)−∇f(x)∥22 ≤ σ2

Here, ∇fi(x) is the gradient of a single component function, which can be viewed as a stochastic
gradient of f(x) if i is chosen uniformly at random from [n].

These assumptions are standard in the analysis of stochastic optimization algorithms for nonconvex
problems [2, 4, 26].

3.2 Convergence Notion

This work addresses the nonconvex optimization problem defined in Eq. (1), a setting prevalent in
modern machine learning, particularly deep learning. In convex problems where local minima are
global, ...the convergence is typically measured by the expected suboptimality E [f(xT )− f(x∗)].
However, in nonconvex settings, identifying a global minimum is generally intractable due to the
potential presence of multiple local minima and saddle points [27, 28].

Consequently, for such nonconvex problems, the convergence is evaluated by the first-order stationary
condition in terms of the expected squared gradient norm E[∥∇f(x)∥22]. An algorithm is considered
to converge if this metric approaches zero or falls below a specified tolerance ϵ [29, 30]. It serves as
the primary metric for the theoretical convergence guarantees presented in this paper.

3.3 ZO Gradient Estimation

Consider an individual cost function fi : Rd → R that satisfies the conditions in Assumption 1. The
ZO approach estimates gradients using only function evaluations.

A commonly used two-point ZO gradient estimator for fi(x) is defined as [4, 31]:

∇̂fi(x) =
d

µ
[fi(x+ µui)− fi(x)]ui, for i ∈ [n], (2)

where d is the dimensionality of the parameter vector x, µ > 0 is a small smoothing parameter, and
{ui}ni=1 are i.i.d. random direction vectors drawn uniformly from the unit Euclidean sphere in Rd

(i.e., ui ∼ U(Sd−1)) [32, 33, 34].

In general, for µ > 0, the ZO gradient estimator ∇̂fi(x) is a biased approximation of the true
gradient ∇fi(x). The bias tends to decrease as µ → 0. However, in practical implementations,
choosing an excessively small µ can render the function difference fi(x + µui) − fi(x) highly
sensitive to numerical errors or system noise or numerical precision issues, potentially failing to
accurately represent the local change in the function [35]. A key property of the ZO estimator is
that for µ > 0, it provides an unbiased estimate of the gradient of a smoothed version of fi, often
denoted fi,µ(x) = Ev[fi(x + µv)] (where v is a random vector from a unit ball or sphere), i.e.,
Eui

[∇̂fi(x)] = ∇fi,µ(x) [29].

To reduce the variance of the ZO gradient estimate, a multi-point version can be employed. Instead
of using a single random direction ui, q ≥ 1 i.i.d. random directions {ui,j}qj=1 are sampled for each
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fi. Since estimating along each direction requires two function queries, the multi-point ZO gradient
estimator involves a total of 2q function queries and is defined as [8, 29]:

∇̂fi(x) =
d

µq

q∑
j=1

[fi(x+ µui,j)− fi(x)]ui,j , for i ∈ [n]. (3)

We refer to this as the multi-point ZO gradient estimate throughout the paper.

3.4 Notations

In this paper, we denote ∇f(x),∇fi(x) as first-order gradients of f(x) and fi(x), respectively.
Also denote ∇̂f(x), ∇̂fi(x) as their zeroth-order variants. E[·] operates as the usual mathematical
expectation, and I is a mini-batch of indices sampled from [n] := 1, . . . , n, with size b = |I|. ∥ · ∥2
denotes the Euclidean/l2 norm as per usual.

4 Hybrid FO and ZO Stochastic Variance Reduction (VAMO)

4.1 From SVRG and ZO-SVRG to Hybrid SVRG

The principles of FO-SVRG and ZO-SVRG have been extensively explored in optimization literature
[2, 3, 5, 36]. FO-SVRG, in particular, is known to achieve a linear convergence rate O(1/T ) for
non-convex problems under certain conditions, significantly outperforming the convergence rate
of FO-SGD [2]. The key step of FO-SVRG involves leveraging a full gradient ∇f(x̂), computed
periodically at a checkpoint x̂, to construct a variance-reduced stochastic gradient estimate [3]:

ĝFO-SVRG = ∇fI(x)−∇fI(x̂) +∇f(x̂), (4)

where ∇fI(x) = 1
b

∑
i∈I ∇fi(x) is the mini-batch stochastic gradient from a subset I ⊆ [n] of

size b. A crucial property of ĝFO-SVRG is that ĝFO-SVRG is an unbiased gradient estimate of ∇f(x),
E[ĝFO-SVRG] = ∇f(x).

In the ZO setting, ZO-SVRG adapts the SVRG structure by replacing all explicit gradient computa-
tions with ZO estimates derived from function evaluations:

ĝZO-SVRG = ∇̂fI(x)− ∇̂fIk
(x̂) + ∇̂f(x̂), (5)

where ∇̂fI(x) = (1/b)
∑

i∈I ∇̂fi(x), ∇̂f(x) = ∇̂f[n](x), and ∇̂fi(x) is a ZO gradient estimate
(e.g., two-point or multi-point as defined in Section 3.3). While structurally similar, a key distinction
is that ĝZO-SVRG is generally a biased estimate of ∇f(x) due to the inherent bias of ∇̂fi(x) relative
to ∇fi(x). This bias significantly complicates its convergence analysis compared to FO-SVRG.

VAMO (Algorithm 1) is motivated by the high cost of computing the full gradient ∇f(x̂) in SVRG for
large-scale models, and introduces a hybrid gradient estimator that combines FO and ZO components
to reduce this overhead:

ĝ = ∇fI(x)− α
(
∇̂fI(x̂)− ∇̂f(x̂)

)
. (6)

Here, ∇fI(x) is the standard FO mini-batch stochastic gradient at the current iterate x, while ∇̂f(x̂)
is the ZO estimate of the full gradient at the checkpoint x̂.

A critical design choice in Eq. (6) is the construction of the variance-reduction term
α
(
∇̂fI(x̂)− ∇̂f(x̂)

)
. To preserve the desirable unbiased property of SVRG, we ensure that

the expectation of the ZO-based correction term, E
[
∇̂fI(x̂)− ∇̂f(x̂)

]
, is zero. Using ZO estimates

for both terms within the parentheses, ∇̂fI(x̂) and ∇̂f(x̂), rather than mixing FO and ZO estimates
within that difference, is key to this property and also contributes to computational savings at the
checkpoint. Maintaining this unbiasedness is pivotal, as it allows for a more tractable convergence
analysis akin to FO-SVRG, distinguishing our approach from many ZO algorithms that contend with
biased estimators.

Furthermore, VAMO introduces a novel mixing coefficient α > 0. This parameter, absent in
traditional SVRG or ZO-SVRG, allows for explicit control over the influence of the ZO-derived
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variance term. The choice of α, which we will discuss in Section 5.1, enables a flexible balance
between computational overhead and convergence performance.

The introduction of this hybrid structure, particularly the ZO estimation at checkpoints and the mixing
coefficient α, means that the convergence analysis of VAMO cannot be trivially inherited from existing
FO-SVRG or ZO-SVRG analyses. It requires a dedicated theoretical investigation to characterize its
behavior and prove its convergence guarantees, which constitutes a core part of our contribution in
Section 4.2. This distinct analytical challenge underscores the theoretical novelty of our work.

Algorithm 1 VAMO(T,m, {ηk}, b, x̄0, µ, α)

1: Input: In addition to parameters in SVRG, set smoothing parameter µ > 0.
2: for s = 1, 2, . . . , S do
3: compute ZO estimate ĝs = ∇̂f(x̄s−1)
4: set xs

0 = x̄s−1

5: for k = 0, 1, . . . ,m− 1 do
6: choose mini-batch Ik of size b
7: compute hybrid FO and ZO gradient blending (6): vs

k = ∇fIk(x
s
k)− α(∇̂fIk(x

s
0)− ĝs)

8: update xs
k+1 = xs

k − ηkv
s
k

9: end for
10: set x̄s = xs

m
11: end for
12: return x̄ chosen uniformly at random from {{xs

k}
m−1
k=0 }Ss=1.

4.2 Convergence analysis

In this section, we present the convergence analysis for VAMO using the two-point ZO gradient
estimate (Eq. (2)). Our analysis is based on an upper bound on the expected squared gradient norm
E
[
∥∇f(x̄)∥22

]
, as shown in Theorem 1. As discussed in Section 3.2, for non-convex objectives, a

small value of E
[
∥∇f(x̄)∥22

]
implies convergence to a stationary point.

Theorem 1. Under the assumptions in Section 3.1, and the two-point ZO gradient estimate is used.
The output x̄ of Algorithm 1 satisfies:

E
[
∥∇f(x̄)∥22

]
≤ E[f(x̄0)− f∗]

T γ̄
+

Sχm

T γ̄
, (7)

where T = Sm, f∗ = minx f(x), γ̄ = mink∈[m] γk, and χm =
∑m−1

k=0 χk with

γk =

(
1− ck+1

βk

)
ηk − 4

(
L

2
+ ck+1

)
×
(
2α2 − 2α+ 1 +

24dδn
b

α2

)
η2k, (8)

χk =

(
L

2
+ ck+1

)
×
(
9δn
b

d2L2µ2α2 +
4σ2

b

(
24dδnα

2 + (1− α)2
))

η2k. (9)

The coefficients {ck} are given by:

ck =

[
1 + βkηk +

6(4d+ 1)L2δnη
2
k

b

]
ck+1 +

3(4d+ 1)L3δnη
2
k

b
, cm = 0. (10)

Proof. See Appendix A.3.

Compared to the convergence rate of SVRG [2], Theorem 1 has an additional error
(

Sχm

T γ̄

)
because

of the use of ZO gradient estimator. χm depends on the epoch m, the step size ηk, the smoothing
parameter µ, the mini-batch size b, the number of optimization variables d and the mixing constant
α. To obtain a clear dependence on these parameters and explore deeper convergence insights, we
simplify (7) to suit specific parameter settings, as shown below.
Corollary 1. Suppose parameters are set as

µ =
1√
T
, ηk = η =

ρ

L
, α =

1

d
, (11)

6



with βk = β = L, where 0 < ρ ≤ 1 is a universal constant independent of b, d, α, L and T . Then
Theorem 1 implies

E[f(x̄0)− f∗]

T γ̄
≤ O

(
1

T

)
,

Sχm

T γ̄
≤ O

(
1

bT
+

1

b

)
, (12)

yielding the convergence rate:

E
[
∥∇f(x̄)∥22

]
≤ O

(
1

T
+

1

bT
+

1

b

)
. (13)

Proof. See Appendix A.4.

From Corollary 1, we can observe that one advantage of this algorithm is that, compared to previous
ZO algorithms, the value of smoothing parameters µ is less restrictive. For example, ZO-SVRG
[5] required µ ≤ O(d−1/2T−1/2), and ZO-SGD [26] required µ ≤ O(d−1T−1/2). Compared to
FO-SGD, the algorithm achieves an improved rate of O(1/T ) rather than the rate of O(1/

√
T ).

Compared to ZO algorithms, the convergence rate is independent of the number of optimization
variables d. Compared to first-order SVRG. though both methods achieve a linear convergence rate,
VAMO suffers an additional error of O(1/b) inherited from Sχm

T γ̄ in (1).

5 VAMO with Multi-Point ZO Gradient Estimation

Building upon the VAMO algorithm previously introduced with a two-point ZO gradient estimator,
this section presents its multi-point ZO estimation variant. This extension is a key component of
VAMO’s adaptive design, as adjusting the number of random directions q in ZO estimate allows
for explicit tuning of the trade-off between computational cost and the precision of the ZO-based
variance reduction, thereby directly influencing convergence performance.
Theorem 2. Suppose assumptions A1 and A2 hold, and the multi-point ZO gradient estimate is used
in Algorithm 1. The gradient norm bound in (7) yields the simplified convergence rate:

E
[
∥∇f(x̄)∥22

]
≤ O

(
1

T
+

1

bT
+

1

b

(
1− q

d

)2)
. (14)

With parameter choices µ = 1
q
√
T

, η = ρ
L , α = q

d , and β = L, the coefficients satisfy:

ck =

(
1 + βkηk

)
ck+1 +

(
L

2
+ ck+1

)(
1 +

4d

q

)
12L2δnη

2
kα

2

b
, (15)

γk = ηk − ck+1ηk
βk

− 4

(
L

2
η2k + ck+1η

2
k

)((
2 +

24dδn
qb

)
α2 − 2α+ 1

)
, (16)

χk =

(
L

2
η2k + ck+1η

2
k

)
×
(
3δn
b

(
1 +

2

q

)
L2d2µ2α2 +

4σ2

b

(24dδnα2

q
+ (1− α)2

))
. (17)

Proof. See Appendix A.5.

By contrast with Corollary 1, it can be seen from Eq. (14) that the use of multi-point version of VAMO
reduces the error O(1/b) in Eq. (1) by leveraging multiple q direction sampling, while increasing the
computational cost accordingly. If q = d, the algorithm’s computational cost and convergence rate
become comparable to FO-SVRG. Please note that the smoothing parameter µ is more restrictive than
that in two-point version of VAMO for reducing the error. A comprehensive summary and comparison
of the computational complexities and convergence rates of our proposed VAMO methods against
various FO and ZO algorithms can be found in Table 1, which is presented and discussed in Section 2.

5.1 Balancing FO and ZO Information via α

The mixing coefficient α in the VAMO update (Eq. (6)) critically balances the FO stochastic gradient
∇fI(x) against the ZO variance correction term ∇̂fI(x̂)−∇̂f(x̂). The optimal choice for α directly
depends on the estimation error ωi inherent in the ZO gradient components (∇̂fi(x) = ∇fi(x)+ωi).
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As established in the literature [5, 29] and detailed in Appendix A.7, the expected squared ZO error
E[|ωi|22] typically scales as O(d) for two-point estimates and O(d/q) for multi-point estimates using
q random directions. fThis relationship dictates that α should reflect the trustworthiness of the ZO
estimates: when the ZO error is substantial (e.g., large d, small q), a smaller α is warranted to prevent
amplifying this error. Conversely, when ZO estimates are more reliable (e.g., larger q reducing error),
a larger α can more aggressively leverage the variance reduction. This principled inverse relationship
between ZO error magnitude (influenced by d and q) and the appropriate scale of α is key. While
specific forms like α ∝ 1/d or α ∝ q/d analyzed in our theoretical sections (e.g., Corollary 1 and
Theorem 2) illustrate this adaptive trend, the core insight is that α must be adjusted to counterbalance
the ZO estimator’s error profile. Such adaptability enables VAMO to effectively navigate the trade-off
between computational cost and convergence performance, a central aspect of its practical utility.

6 Applications and Experiments

In this section, we present empirical results to validate the effectiveness and adaptability of the
proposed VAMO. We first demonstrate VAMO’s adaptive capabilities by evaluating the impact of its
key tunable component, the number of ZO random directions (q), on a synthetic task, showcasing
how performance can be configured based on computational budget. Subsequently, we benchmark its
performance against standard FO and ZO methods on a classification task using DNNs, and finally,
we demonstrate its utility in a large model fine-tuning scenario [7]. Detailed experimental setups and
hyperparameter settings for all methods and tasks are provided in Appendix A.8, A.9 and A.10.

Adaptability Experiment: Nonconvex Least Squares with Varying q To showcase VAMO’s
adaptive nature and empirically validate the theoretical benefits of its multi-point ZO estimation
strategy (as discussed in Section 5), we conducted experiments on a synthetic non-convex least-
squares task. The objective was f(x) = 1

n

∑n
i=1(h(x; zi) − yi)

2, with n = 1000 component
functions and a parameter dimension d = 100, where h(x; ·) was parameterized by a simple non-
convex neural network. We compared VAMO variants using q ∈ {1, 3, 5} (number of ZO query
directions for the multi-point ZO gradient estimator) against the classical FO-SGD algorithm.

Fig. 1a presents the training loss convergence. Consistent with our theoretical analysis (see Table 1),
all VAMO variants achieve an O(1/T ) convergence rate, outperforming FO-SGD’s O(1/

√
T ) rate.

The figure clearly illustrates VAMO’s adaptability: increasing q improves convergence performance,
effectively mitigating the additional O(1/b) error term associated with the two-point (q = 1) variant.
This aligns with the theoretical prediction that this error term diminishes for larger q (scaling towards
O( 1b (1 − q/d)2)). These results empirically validate our theory and highlight VAMO’s practical
ability to adaptively trade computational cost (via varying q) for enhanced convergence by managing
ZO estimation error, a key aspect of its flexible and adaptive design.

Multiclass Classification For this benchmark on the MNIST dataset [37], we trained a Multi-Layer
Perceptron (MLP) and compared our proposed VAMO (two-point version, q = 1) against FO-
SGD [9], ZO-SGD [26], and ZO-SVRG [5]. As illustrated by the training loss convergence in Fig. 1b,
our VAMO algorithm demonstrates a significant performance advantage over the purely ZO methods
(ZO-SGD and ZO-SVRG), achieving both substantially faster convergence and a better final loss
value. Moreover, VAMO’s convergence behavior is highly competitive with that of the standard
FO-SGD algorithm. These findings underscore the practical effectiveness of our hybrid strategy.

GPT2 Fine-Tuning To further assess VAMO’s practical utility and its advantages in complex, large-
scale settings, we applied it to the task of fine-tuning a pre-trained GPT-2 model [38]. Specifically,
this experiment involved fine-tuning the base GPT-2 model on the MultiNLI (MNLI) dataset [39] for
a natural language inference task. Our proposed VAMO algorithm was benchmarked against key FO
optimizers, notably FO-SGD [9], and representative ZO methods such as ZO-SGD and ZO-SVRG.

In Fig. 2, we present training loss against iteration steps and queries, highlighting VAMO’s practical
advantages, with the query-based evaluation in Fig. 2b focusing on its comparison with FO-SGD.
To clearly distinguish from potential ZO query definitions and to establish a consistent basis for
comparison with FO methods, a query here is specifically defined in terms of FO computational
units: it denotes a single pass (either forward or backward) of one data sample through the model;
consequently, an FO mini-batch gradient calculation on b samples costs 2b queries. According to
Table 1, VAMO incurs an additional query cost over FO-SGD due to the use of the full ZO gradient.
FO-SGD has a total computational cost of O(bdT ), while VAMO incurs an additional O(nS) cost.
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For large models such as GPT-2 (e.g., d ≈ 1.2 × 108, n ≈ 256,m = 10, b = 32, with T = Sm),
this leads to only a minor fractional overhead of approximately n/(2bdm) compared to FO-SGD,
assuming the per-step ZO correction is also query-light. Therefore, with a total query cost only
slightly higher than that of FO-SGD, VAMO achieves significantly faster and more stable convergence
per query, as demonstrated in Fig. 2b. This improvement stems from its variance-reduced SVRG
backbone, now made efficient and practical through ZO techniques.
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Figure 1: (a) Convergence comparison on a non-convex least-squares task, showing VAMO with
varying ZO query points (q = 1, 3, 5) against FO-SGD. (b) Convergence comparison on the MNIST
classification task against pure FO and ZO methods.
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Figure 2: Convergence comparison on the fine-tuning GPT2 task against pure FO and ZO methods.

7 Conclusion

In this paper, we propose a hybrid FO and ZO variance-reduced algorithm, VAMO, for nonconvex
optimization. We demonstrate that compared to FO-SGD, our algorithm improves the convergence
rate from O(1/

√
T ) to a linear rate of O(1/T ), achieving convergence performance similar to FO-

SVRG. Compared to ZO algorithms, our method maintains convergence performance independent of
the problem dimension d, making it effective for optimizing high-dimensional problems. However,
due to the use of two-point ZO gradient estimation, our convergence result includes an additional
error term O(1/b). To mitigate this, we introduce a multi-point ZO gradient estimation variant,
which reduces this error. Unlike previous purely FO or ZO methods, our hybrid approach leverages
the advantages of both, enabling a more flexible trade-off between computational efficiency and
convergence performance. This makes it more adaptable to real-world applications with complex
constraints. Our theoretical analysis and empirical evaluations, including comparisons with state-of-
the-art methods, demonstrate the effectiveness of our approach.
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A Appendix / supplemental material

A.1 ZO gradient estimator

Lemma 1. Under the assumptions in Section 3.1, and define fµ = Eu∼Ub
[f(x+ µu)] where Ub is

the uniform distribution over the unit Euclidean ball. Then:

(i) fµ is L-smooth with
∇fµ(x) = Eu

[
∇̂f(x)

]
. (18)

(ii) For any x ∈ Rd:

|fµ(x)− f(x)| ≤ Lµ2

2
, (19)

∥∇fµ(x)−∇f(x)∥22 ≤ µ2L2d2

4
, (20)

1

2
∥∇f(x)∥22 −

µ2L2d2

4
≤ ∥∇fµ(x)∥22 ≤ 2∥∇f(x)∥22 +

µ2L2d2

2
. (21)

(iii) For any x ∈ Rd:

Eu

[
∥∇̂f(x)−∇fµ(x)∥22

]
≤ 2d∥∇f(x)∥22 +

µ2L2d2

2
. (22)

Proof. See the proof of Lemma 1 in [5]

Lemma 2. Under the conditions of Lemma 1:

(i) For any x ∈ Rd:
∇fµ(x) = Eu

[
∇̂f(x)

]
. (23)

where ∇̂f(x) is the multi-point gradient estimate.
(ii) For any x ∈ Rd:

E
[
∥∇̂f(x)−∇fµ(x)∥22

]
≤ 2d

q
∥∇f(x)∥22 +

µ2L2d2

2q
. (24)

Proof. See the proof of Lemma 2 in [5]

A.2 Second-Order Moment of the Hybrid Gradient Estimator

The primary goal of our convergence analysis is to establish theoretical guarantees for VAMO in
solving non-convex optimization problems. Specifically, we aim to bound the expected squared norm
of the gradient, E[∥∇f(x̄)∥22], as shown in Theorem 1. Due to the hybrid structure of the gradient
estimator vs

k used in VAMO, directly analyzing the final convergence metric is challenging. As a key
intermediate step, we first derive an upper bound on the second-order moment E[∥vs

k∥22].
Proposition 1. Under the assumptions in Section 3.1, and two-point ZO gradient estimate is used in
Algorithm 1. The blended gradient vs

k in Step 7 of Algorithm 1 satisfies,

E
[
∥vs

k∥22
]
≤ 4

(
2α2 − 2α+ 1 +

24dδn
b

α2

)
E
[
∥∇f(xs

k)∥22
]

+
12δn(4d+ 1)L2

b
α2E

[
∥xs

0 − xs
k∥22
]

+
9δn
b

d2L2µ2α2 +
4σ2

b

(
24dδnα

2 + (1− α)2
)
,

(25)

where δn = 1 if the mini-batch contains i.i.d. samples from [n] with replacement, and δn = I(b < n)
if samples are randomly selected without replacement. Here I(b < n) is 1 if b < n, and 0 if b = n.
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Proof. In Algorithm 1, we recall that the mini-batch I is chosen uniformly randomly (with replace-
ment). It is known from Lemma 1 and Lemma 3 that

EIk

[
∇fIk

(xs
k)− ∇̂fIk

(xs
0)
]
= ∇f(xs

k)− ∇̂f(xs
0). (26)

We then rewrite vs
k as

vs
k = (1− α)∇fIk

(xs
k)

+ α
(
∇fIk

(xs
k)− ∇̂fIk

(xs
0)− EIk

[
∇fIk

(xs
k)− ∇̂fIk

(xs
0)
]
+∇f(xs

k)
) (27)

Taking the expectation of ∥vs
k∥

2
2 with respect to all the random variables, we have

E
[
∥vs

k∥
2
2

]
≤ 2 (1− α)

2 E
[
∥∇fIk

(xs
k)∥

2
2

]
+ 2α2E

[∥∥∥∇fIk
(xs

k)− ∇̂fIk
(xs

0)− EIk

[
∇fIk

(xs
k)− ∇̂fIk

(xs
0)
]
+∇f(xs

k)
∥∥∥2
2

]
≤ 4α2E

[∥∥∥∇fIk
(xs

k)− ∇̂fIk
(xs

0)− EIk

[
∇fIk

(xs
k)− ∇̂fIk

(xs
0)
]∥∥∥2

2

]
+ 4α2E

[
∥∇f(xs

k)∥
2
2

]
+ 2 (1− α)

2 E
[
∥∇fIk

(xs
k)∥

2
2

]
(28)

where the first inequality holds due to Lemma 4. Based on (26), we note that the following holds

n∑
i=1

{
∇fi(x

s
k)− ∇̂fi(x

s
0)− EIk

[
∇fIk

(xs
k)− ∇̂fIk

(xs
0)
]}

= n(∇f(xs
k)− ∇̂f(xs

0))− n(∇f(xs
k)− ∇̂f(xs

0)) = 0.

(29)

Based on (29) and applying Lemma 1 and Lemma 3, the first term at the right hand side (RHS) of
(28) yields

E
[∥∥∥∇fIk

(xs
k)− ∇̂fIk

(xs
0)− EIk

[
∇fIk

(xs
k)− ∇̂fIk

(xs
0)
]∥∥∥2

2

]
≤ δn

bn

n∑
i=1

E
[
∥∇fi(x

s
k)− ∇̂fi(x

s
0)− (∇f(xs

k)− ∇̂f(xs
0))∥22

]
= E

[
δn
b

(
1

n

n∑
i=1

∥∇fi(x
s
k)− ∇̂fi(x

s
0)∥22 − ∥∇f(xs

k)− ∇̂f(xs
0)∥22

)]

≤ δn
bn

n∑
i=1

E
[∥∥∥∇fi(x

s
k)− ∇̂fi(x

s
0)
∥∥∥2
2

]
.

(30)

where the first inequality holds due to Lemma 1 and Lemma 3 (taking the expectation with respect to
mini-batch I), we define δn as

δn =

{
1 if I contains i.i.d. samples with replacement (Lemma 3)
I(b < n) if I contains samples without replacement (Lemma 4). (31)

Substituting (30) into (28), we obtain

E
[
∥vs

k∥
2
2

]
≤ 2 (1− α)

2 E
[
∥∇fIk

(xs
k)∥

2
2

]
+

4α2δn
bn

n∑
i=1

E
[∥∥∥∇fi(x

s
k)− ∇̂fi(x

s
0)
∥∥∥2
2

]
+ 4α2E

[
∥∇f(xs

k)∥
2
2

]
.

(32)
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Similar to Lemma 1, we introduce a smoothing function fi,µ of fi, and continue to bound the second
term at the right hand side (RHS) of (32). This yields

E
[
∥∇fi(x

s
k)− ∇̂fi(x

s
0)∥22

]
≤ 3E

[
∥∇fi(x

s
k)−∇fi,µ(x

s
k)∥22

]
+ 3E

[
∥∇fi,µ(x

s
0)− ∇̂fi(x

s
0)∥22

]
+ 3E

[
∥∇fi,µ(x

s
k)−∇fi,µ(x

s
0)∥22

]
≤ 6dE[∥∇fi(x

s
0)∥22] +

9

4
L2d2µ2 + 3E

[
∥∇fi,µ(x

s
k)−∇fi,µ(x

s
0)∥22

]
(33)

Since both fi and fi,µ are L-smooth (Lemma 1), we have

E
[
∥∇fi,µ(x

s
k)−∇fi,µ(x

s
0)∥22

]
≤ L2E

[
∥xs

k − xs
0∥22
]
,

E
[
∥∇fi(x

s
0)∥22

]
≤ 2E

[
∥∇fi(x

s
0)−∇fi(x

s
k)∥22

]
+ 2E

[
∥∇fi(x

s
k)∥22

]
≤ 2L2E

[
∥xs

0 − xs
k∥22
]
+ 2E

[
∥∇fi(x

s
k)∥22

]
.

(34)

We obtain

E
[
∥∇fi(x

s
k)− ∇̂fi(x

s
0)∥22

]
≤ 12dE[∥∇fi(x

s
k)∥22] + (12d+ 3)L2E

[
∥xs

0 − xs
k∥22
]
+

9

4
L2d2µ2

≤ 24dE
[
∥∇fi(x

s
k)−∇f(xs

k)∥22
]
+ 24dE

[
∥∇f(xs

k)∥22
]

+ (12d+ 3)L2E
[
∥xs

0 − xs
k∥22
]
+

9

4
L2d2µ2

≤ 24dσ2 + 24dE
[
∥∇f(xs

k)∥22
]
+ (12d+ 3)L2E

[
∥xs

0 − xs
k∥22
]
+

9

4
L2d2µ2,

(35)

where the last inequality holds due to Assumption in Section 3.1.
We bound the first term at the right hand side (RHS) of (32). This yields

E
[
∥∇fIk

(xs
k)∥

2
2

]
≤ 2E

[
∥∇fIk

(xs
k)−∇f(xs

k)∥
2
2

]
+ 2E

[
∥∇f(xs

k)∥
2
2

]
≤ 2

b
σ2 + 2E

[
∥∇f(xs

k)∥
2
2

] (36)

Therefore, we have

E
[
∥vs

k∥22
]
≤ 4(1− α)2

b
σ2 + 4(1− α)2E

[
∥∇f(xs

k)∥
2
2

]
+

12δn(4d+ 1)L2

b
α2E

[
∥xs

0 − xs
k∥22
]
+

(
4 +

96dδn
b

)
α2E

[
∥∇f(xs

k)∥22
]

+
9δn
b

d2L2µ2α2 +
96dσ2δn

b
α2.

= 4

(
2α2 − 2α+ 1 +

24dδn
b

α2

)
E
[
∥∇f(xs

k)∥22
]

+
12δn(4d+ 1)L2

b
α2E

[
∥xs

0 − xs
k∥22
]

+
9δn
b

d2L2µ2α2 +
4σ2

b

(
24dδnα

2 + (1− α)2
)
.

(37)

The bound on E[∥vs
k∥22], detailed in Proposition 1, plays a central role in our analysis. It enables

us to control the error accumulation during the optimization process and ultimately leads to the
convergence rate stated in Theorem 1. Based on Proposition 1, Theorem 1 provides the convergence
rate of VAMO in terms of an upper bound on E

[
∥∇f(x̄)∥22

]
at the solution x̄.

14



A.3 Proof of Theorem 1

Proof. Since f is L-smooth (Lemma 1), from Lemma 5 we have

f(xs+1
k ) ≤ f(xs

k) + ⟨∇f(xs
k),x

s+1
k − xs

k⟩+
L

2
∥xs+1

k − xs
k∥22

= f(xs
k)− ηk⟨∇f(xs

k),v
s
k⟩+

L

2
η2k∥vs

k∥22
(38)

where the last equality holds due to xs
k+1 = xs

k − ηkv
s
k. Since xs

k and xs
0 are independent of I and

random directions u used for ZO gradient estimates, from (18) we obtain

Eu,Ik
[vs

k] =Eu,Ik

[
∇fIk

(xs
k)− α

(
∇̂fIk

(xs
0)− ∇̂f(xs

0)
)]

=∇f(xs
k)− α (∇fµ(x

s
0)−∇fµ(x

s
0)) = ∇f(xs

k).
(39)

Combining (38) and (39), we have

E
[
f(xs

k+1)
]
≤ E [f(xs

k)]− ηkE
[
∥∇f(xs

k)∥22
]
+

L

2
η2kE

[
∥vs

k∥22
]
, (40)

where the expectation is taken with respect to all random variables.
At RHS of (40), the upper bound on E

[
∥vs

k∥22
]

is given by Proposition 1,

E
[
∥vs

k∥22
]
≤ 4

(
2α2 − 2α+ 1 +

24dδn
b

α2

)
E
[
∥∇f(xs

k)∥22
]

+
12δn(4d+ 1)L2

b
α2E

[
∥xs

0 − xs
k∥22
]

+
9δn
b

d2L2µ2α2 +
4σ2

b

(
24dδnα

2 + (1− α)2
)
.

(41)

In (40), we further bound E
[
∥xs

k+1 − xs
0∥22
]

as,

E
[
∥xs

k+1 − xs
0∥22
]
= E

[
∥xs

k+1 − xs
k + xs

k − xs
0∥22
]

= η2kE
[
∥vs

k∥22
]
+ E

[
∥xs

k − xs
0∥22
]
− 2ηkE [⟨vs

k,x
s
k − xs

0⟩]
= η2kE

[
∥vs

k∥22
]
+ E

[
∥xs

k − xs
0∥22
]
− 2ηkE [⟨∇f(xs

k),x
s
k − xs

0⟩]

≤ η2kE
[
∥vs

k∥22
]
+ E

[
∥xs

k − xs
0∥22
]
+ 2ηkE

[
1

2βk
∥∇f(xs

k)∥22 +
βk

2
∥xs

k − xs
0∥22
]
,

(42)

We introduce a Lyapunov function with respect to fµ,

Rs
k = E

[
f(xs

k) + ck∥xs
k − xs

0∥22
]
, (43)

for some ck > 0, Substituting (40) and (42) into Rs
k+1, we obtain

Rs
k+1 = E

[
f(xs

k+1) + ck+1∥xs
k+1 − xs

0∥22
]

≤ E
[
f(xs

k)− ηk∥∇f(xs
k)∥22 +

L

2
η2k∥vs

k∥22
]
+ E

[
ck+1η

2
k∥vs

k∥22 + ck+1∥xs
k − xs

0∥s2
]

+ E
[
ck+1ηk
βk

∥∇f(xs
k)∥22 + ck+1βkηk∥xs

k − xs
0∥22
]

= E [f(xs
k)]−

(
ηk − ck+1ηk

βk

)
E
[
∥∇f(xs

k)∥22
]

+ (ck+1 + ck+1βkηk)E
[
∥xs

k − xs
0∥22
]
+

(
L

2
η2k + ck+1η

2
k

)
E
[
∥vs

k∥22
]
.

(44)
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Moreover, substituting (41) into (44), we have

Rs
k+1 ≤E [f(xs

k)]−
(
ηk − ck+1ηk

βk

)
E
[
∥∇f(xs

k)∥22
]
+ (ck+1 + ck+1βkηk)E

[
∥xs

k − xs
0∥22
]

+

(
L

2
η2k + ck+1η

2
k

)
12(4d+ 1)L2δn

b
α2E

[
∥xs

k − xs
0∥22
]

+ 4

(
L

2
η2k + ck+1η

2
k

)(
2α2 − 2α+ 1 +

24dδn
b

α2

)
E
[
∥∇f(xs

k)∥22
]

+

(
L

2
η2k + ck+1η

2
k

)(
9δn
b

d2L2µ2α2 +
4σ2

b

(
24dδnα

2 + (1− α)2
))

.

(45)
Based on the definition of ck = ck+1 + βkηkck+1 +

(
L
2 η

2
k + ck+1η

2
k

) 12(4d+1)L2δn
b α2 and the

definition of Rs
k in (43), we can simplify the inequality (45) as

Rs
k+1 ≤ Rs

k −
(
ηk − ck+1ηk

βk

)
E
[
∥∇f(xs

k)∥22
]

+ 4

(
L

2
η2k + ck+1η

2
k

)(
2α2 − 2α+ 1 +

24dδn
b

α2

)
E
[
∥∇f(xs

k)∥22
]

+

(
L

2
η2k + ck+1η

2
k

)(
9δn
b

d2L2µ2α2 +
4σ2

b

(
24dδnα

2 + (1− α)2
))

= Rs
k − γkE

[
∥∇f(xs

k)∥22
]
+ χk,

(46)

where γk and χk are coefficients given by

γk =

(
1− ck+1

βk

)
ηk − 4

(
L

2
+ ck+1

)(
2α2 − 2α+ 1 +

24dδn
b

α2

)
η2k,

χk =

(
L

2
+ ck+1

)(
9δn
b

d2L2µ2α2 +
4σ2

b

(
24dδnα

2 + (1− α)2
))

η2k

(47)

Taking a telescopic sum for (47), we obtain

Rs
m ≤ Rs

0 −
m−1∑
k=0

γkE
[
∥∇f(xs

k)∥22
]
+ χm, (48)

where χm =
∑m−1

k=0 χk. It is known from (43) that,

Rs
0 = E [f(xs

0)] , Rs
m = E [f(xs

m)] , (49)

where the last equality used the fact that cm = 0, since x̄s−1 = xs
0 and x̄s = xs

m, we obtain

Rs
0 −Rs

m = E [f(x̄s−1)− f(x̄s)] . (50)

Telescoping the sum for s = 1, 2, . . . , S, we obtain,

S∑
s=1

m−1∑
k=0

γkE[∥∇f(xs
k)∥22] ≤ E[f(x̄0)− f(x̄S)] + Sχm. (51)

let γ̄ = mink γk and we choose x̄ uniformly random from {{xs
k}

m−1
k=0 }Ss=1, then we obtain

E[∥∇f(x̄)∥22] ≤
E[f(x̄0)− f∗]

T γ̄
+

Sχm

T γ̄
. (52)
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A.4 Proof of Corollary 1

Proof. We start by rewriting ck in (10) as

ck = (1 + θ)ck+1 +
6(1 + 4d)L3δnη

2

b
α2 (53)

where θ = βη + 12(1+4d)L2δnη
2

b α2. The recursive formula (53) implies that ck ≤ c0 for any k, and

c0 =
6(1 + 4d)L3δnη

2α2

b

(1 + θ)m − 1

θ
. (54)

Based on the choice of η = ρ
L , α = 1

d , and β = L, we have

θ = ρ+
12(4d+ 1)δnρ

2

bd2
(55)

where we have used the fact that δn ≤ 1, Substituting (55) into (54), we have

ck ≤ c0 =
6(1 + 4d)L3δnα

2

b

η2

θ
[(1 + θ)m − 1] =

6(1 + 4d)Lρδn
bd2 + 12(4d+ 1)δnρ

[(1 + θ)m − 1]

≤ 30Lρδn
bd

[(1 + θ)m − 1] ≤ 30Lρδn
bd

(e− 1) ≤ 60Lρδn
bd

,

(56)

where the third inequality holds since (1 + θ)m ≤ (1 + 31ρ
d )m, (1 + 1/a)a ≤ lima→∞(1 + 1

a )
a =

e for a > 0, and the last inequality loosely uses the notion ’≤’ since e < 3.
We recall from (8) and (9) that

γ̄ = min
0≤k≤m−1

{(
1− ck+1

βk

)
ηk − 4

(
L

2
+ ck+1

)(
2α2 − 2α+ 1 +

24dδn
b

α2

)
η2k

}
. (57)

Since ηk = η, βk = β and ηk = η, βk = β, we have

γ̄ ≥
(
1− c0

β

)
η − 4

(
L

2
+ c0

)(
2α2 − 2α+ 1 +

24dδn
b

α2

)
η2. (58)

From (56) and the definition of β, we have
c0
β

≤ 60ρ

bd
,

(59)

and (
L

2
+ c0

)(
2α2 − 2α+ 1 +

24dδn
b

α2

)
η

≤
(
L

2
+

60Lρ

bd

)(
2

d2
− 2

d
+ 1 +

24δn
bd

)
ρ

L

≤ ρ

(
1 +

24

bd

) (60)

Substituting (59) and (60) into (58), we obtain

γ̄ ≥ η

(
1− 60ρ

bd
− 4ρ− 96ρ

bd

)
≥ η

(
1− 156ρ

bd
− 4ρ

)
, (61)

where we have used the fact that b < d. Moreover, if we set ρ ≤ 1
160 , then γ̄ > 0. In other

words, the current parameter setting is valid for Theorem 1. Upon defining a universal constant
z0 = 1− 156ρ

bd − 4ρ, we have
γ̄ ≥ ηz0 (62)

Next, we find the upper bound on χm in (9) given the current parameter setting and ck ≤ c0,

χm ≤ m

(
L

2
+ c0

)(
9δn
b

d2L2µ2α2 +
4σ2

b

(
24dδnα

2 + (1− α)2
))

η2 (63)
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Based on γ̄ ≥ ηz0 and c0 ≤ 60Lρδn ≤ L
2 , we have

χm

γ̄
≤ mρ

(
9δn
bz0

d2L2µ2α2 +
4σ2

bz0

(
24dδnα

2 + (1− α)2
))

(64)

since T = Sm, and µ = 1√
T

,the above inequality yields

Sχm

T γ̄
≤ 9ρL2δn

z0bT
+

4σ2

bz0

(
24δn
d

+ (1− 1

d
)2
)

= O

(
1

Tb
+

1

b

)
, (65)

where in the big O notation, we only keep the dominant terms and ignore the constant numbers that
are independent of d, b, and T .
Substituting (62) and (65) into (7), we have

E[∥∇f(x)∥22] ≤
[f(x̄0)− f∗]

Tz0

L

ρ
+

Sχm

T γ̄
= O

(
1

T
+

1

bT
+

1

b

)
. (66)

A.5 Proof of Theorem 2

Proof. Motivated by Proposition 1, we first bound ∥vs
k∥

2
2, Following, we have

E
[
∥vs

k∥
2
2

]
≤ 2 (1− α)

2 E
[
∥∇fIk

(xs
k)∥

2
2

]
+

4α2δn
bn

n∑
i=1

E
[∥∥∥∇fi(x

s
k)− ∇̂fi(x

s
0)
∥∥∥2
2

]
+ 4α2E

[
∥∇f(xs

k)∥
2
2

]
.

(67)

Following together with (24), we can obtain that

E
[
∥∇fi(x

s
k)− ∇̂fi(x

s
0)∥22

]
≤ 24d

q
σ2 +

24d

q
E
[
∥∇f(xs

k)∥22
]

+

(
3 +

12d

q

)
L2E

[
∥xs

0 − xs
k∥22
]
+

(
3

4
+

3

2q

)
L2d2µ2,

(68)

Substituting (68) and (36) into (67), we have:

E
[
∥vs

k∥22
]
≤ 4

((
2 +

24dδn
qb

)
α2 − 2α+ 1

)
E
[
∥∇f(xs

k)∥22
]

+
12L2δn

b

(
1 +

4d

q

)
α2E

[
∥xs

0 − xs
k∥22
]
+

3δn
b

(
1 +

2

q

)
L2d2µ2α2

+
4σ2

b

(
24dδnα

2

q
+ (1− α)2

)
.

(69)

Substituting (69) into (44), we have:

Rs
k+1 ≤E [f(xs

k)]−
(
ηk − ck+1ηk

βk

)
E
[
∥∇f(xs

k)∥22
]
+ (ck+1 + ck+1βkηk)E

[
∥xs

k − xs
0∥22
]

+

(
L

2
η2k + ck+1η

2
k

)
12L2δn

b

(
1 +

4d

q

)
α2E

[
∥xs

k − xs
0∥22
]

+ 4

(
L

2
η2k + ck+1η

2
k

)((
2 +

24dδn
qb

)
α2 − 2α+ 1

)
E
[
∥∇f(xs

k)∥22
]

+

(
L

2
η2k + ck+1η

2
k

)
3δn
b

(
1 +

2

q

)
L2d2µ2α2

+

(
L

2
η2k + ck+1η

2
k

)
4σ2

b

(
24dδnα

2

q
+ (1− α)2

)
(70)
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Based on the definition of ck = (1 + βkηk) ck+1 +
(
L
2 + ck+1

) (
1 + 4d

q

)
12L2δnη

2
kα

2

b and Rs
k given

by (43), we can simplify (70) to

Rs
k+1 ≤ Rs

k −
(
ηk − ck+1ηk

βk

)
E
[
∥∇f(xs

k)∥22
]

+ 4

(
L

2
η2k + ck+1η

2
k

)((
2 +

24dδn
qb

)
α2 − 2α+ 1

)
E
[
∥∇f(xs

k)∥22
]

+

(
L

2
η2k + ck+1η

2
k

)
3δn
b

(
1 +

2

q

)
L2d2µ2α2

+

(
L

2
η2k + ck+1η

2
k

)
4σ2

b

(
24dδnα

2

q
+ (1− α)2

)
≤ Rs

k − γkE
[
∥∇f(xs

k)∥22
]
+ χk,

(71)

where γk and χk are defined coefficients in Theorem 2.
Based on (71) and the following argument in, we can achieve

E[∥∇f(x̄)∥22] ≤
E[f(x̄0)− f∗]

T γ̄
+

Sχm

T γ̄
. (72)

The rest of the proof is similar to the proof of Corollary 1 with the added complexity of the parameter
q.
Let θ = βηk +

(
1 + 4d

q

)
12L2δnα

2

b η2k, and ck = ck+1(1 + θ) +
(
1 + 4d

q

)
6L3δnη

2
kα

2

b . This leads to:

c0 =

(
1 +

4d

q

)
6L3δnη

2α2

b

(1 + θ)m − 1

θ
(73)

Let η = ρ
L , α = q

d , β = L, and q ≤ d we have:

θ = ρ+ (q + 4d)
12δnqρ

2

bd2
≤ ρ+ 12ρ

(
q2

d2
+ 4

q

d

)
≤ ρ+

60ρq

d
(74)

Substituting (74) into (73), we have:

ck ≤ c0 =

(
1 +

4d

q

)
6L3δnη

2α2

b

(1 + θ)m − 1

θ

=
6(q + 4d)Lδnρq

bd2 + 12(q + 4d)δnρq
[(1 + θ)m − 1]

≤ 6(q + 4d)Lδnρq

bd2
[(1 + θ)m − 1]

≤ 30Lδnρq

bd
(e− 1) =

60Lδnρq

bd
,

(75)

where the second inequality holds since q ≤ d, and the first inequality holds if m = ⌈ 1
ρ+ 108ρq

d

⌉
Because we define γ̄ = mink γk, we have

γ̄ ≥ η − c0η

β
− 4

(
L

2
η2 + c0η

2

)((
2 +

24dδn
qb

)
α2 − 2α+ 1

)
(76)

From (75), we have,
c0
β

≤ 60ρq

bd
(77)

Because η = ρ
L , α = q

d , and q ≤ d we have(
L

2
η + c0η

)((
2 +

24dδn
qb

)
α2 − 2α+ 1

)
≤
(
ρ

2
+

60ρ2q

bd

)(
2q2

d2
+

24q

bd
− 2q

d
+ 1

)
≤ ρ

(
24q

bd
+ 1

)
≤ ρ

(
24

b
+ 1

) (78)
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The second inequality holds if we let ρ ≤ 1
120 Substituting (78) and (77) into (76), we can get

γ̄ ≥ η

(
1− 60ρq

bd
− 4ρ

(
24

b
+ 1

))
= ηz0, (79)

where z0 > 0, and γ̄ is a universal constant that is independent of T , b and d.
Then, we bound χm =

∑
k χk

χm ≤ m

(
L

2
η2 + c0η

2

)
3δn
b

(
1 +

2

q

)
L2d2µ2α2

+m

(
L

2
η2 + c0η

2

)
4σ2

b

(
24dδnα

2

q
+ (1− α)2

) (80)

Because c0 ≤ 60Lρq
bd ≤ L

2 if ρ ≤ 1
120 , this yields

χm

γ̄
≤ ρ

z0

3δn
b

(
1 +

2

q

)
L2µ2q2

+
ρ

z0

4σ2

b

(
24qδn
d

+ (1− q

d
)2
) (81)

Since T = Sm and µ = 1
q
√
T

, we have

Sχm

T γ̄
≤ ρ

z0

3δn
b

(
1 +

2

q

)
L2

T

+
ρ

z0

4σ2

b

(
24qδn
d

+ (1− q

d
)2
)

≤ O

(
1

bT
+

1

b

(
1− q

d

)2)
(82)

Substituting (79) and (82) into (7), we have

E[∥∇f(x̄)∥22] ≤
E[f(x̄0)− f∗]

Tz0

L

ρ
+

Sχm

T γ̄
= O

(
1

T
+

1

bT
+

1

b

(
1− q

d

)2)
(83)

A.6 Auxiliary Lemmas

Lemma 3. Let {zi}ni=1 be a sequence of n vectors. Let I be a mini-batch of size b, which contains
i.i.d. samples selected uniformly randomly (with replacement) from [n].

EI

[
1

b

∑
i∈I

zi

]
=

1

n

n∑
j=1

zj . (84)

When
∑n

i=1 zi = 0, then

EI

∥∥∥∥∥1b∑
i∈I

zi

∥∥∥∥∥
2

2

 =
1

bn

n∑
i=1

∥zi∥22. (85)

Proof. See the proof of Lemma 4 in [5].

Lemma 4. Let {zi}ni=1 be a sequence of n vectors. Let I be a uniform random mini-batch of [n]
with size b (no replacement in samples). Then

EI

[
1

b

∑
i∈I

zi

]
=

1

n

n∑
j=1

zj . (86)

When
∑n

i=1 zi = 0, then

EI

∥∥∥∥∥1b∑
i∈I

zi

∥∥∥∥∥
2

2

 =
I(b < n)

bn

n∑
i=1

∥zi∥22. (87)

where I is an indicator function, which is equal to 1 if b < n and 0 if b = n.
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Proof. See the proof of Lemma A.1 in [40].

Lemma 5. For variables {zi}ni=1, we have∥∥∥∥∥
n∑

i=1

zi

∥∥∥∥∥
2

2

≤ n

n∑
i=1

∥zi∥22. (88)

Proof. See the proof of Lemma 6 in [5].

Lemma 6. if f is L-smooth, then for any x,y ∈ Rd

|f(x)− f(y)− ⟨∇fi(y),x− y⟩| ≤ L

2
∥x− y∥22. (89)

Proof. This is a direct consequence of Lemma A.2 in [40].

A.7 Analysis of Zeroth-Order Gradient Estimation Error

This section details bounds on the expected squared error of the ZO gradient estimators used in
our work. We consider a ZO gradient estimator ∇̂fi(x) for a component function fi(x), which
approximates the true gradient ∇fi(x) with an estimation error ωi(x), such that ∇̂fi(x) = ∇fi(x)+
ωi(x). The characteristics of the expected squared error, E[∥ωi(x)∥22], are presented below.

For the two-point ZO gradient estimator of fi(x), as defined in Equation (2) in the main text, the
expected squared error is bounded by:

E[∥ωi(x)∥22] ≤ O(d)∥∇fi(x)∥22 +O(µ2L2d2). (90)

Here, d is the problem dimension, µ is the smoothing parameter, and L is the smoothness constant
associated with fi.

Subsequently, for the multi-point ZO gradient estimator of fi(x) using 2q query points, as defined in
Equation (3) in the main text, the expected squared error is bounded by:

E[∥ωi(x)∥22] ≤ O(d/q)∥∇fi(x)∥22 +O(µ2L2d2). (91)

The detailed proofs for these bounds can be found in Proposition 2 of [5].

A.8 Nonconvex Least Squares Task

The primary objective of this experiment was to empirically investigate the impact of the number
of ZO query points (q) on the performance of VAMO and to validate the theoretical benefits of
its multi-point ZO estimation strategy. The optimization problem was a finite-sum non-convex
least-squares objective: f(x) = 1

n

∑n
i=1(h(x; zi) − yi)

2. We configured this synthetic task with
n = 1000 individual component functions and a parameter dimension of d = 100. The function
h(x; ·) was parameterized using a simple neural network with a non-convex activation function to
ensure the overall non-convexity of the loss landscape.

In this setup, VAMO variants utilizing q ∈ {1, 3, 5} query directions for the multi-point ZO gradient
estimator were compared against the classical first-order SGD algorithm. A mini-batch size of b = 8
was consistently applied across all methods. Learning rates for both VAMO (for each q setting) and
FO-SGD were individually tuned by selecting the best performing value from the range [10−2, 10−1].
For all VAMO variants, the ZO smoothing parameter was fixed at µ = 10−3. The mixing coefficient
α for VAMO was also tuned for each value of q, guided by the theoretical insights on balancing FO
and ZO information discussed in Section 5.1.

A.9 MNIST Classification Task

For the MNIST multi-class image classification task [37], we trained a Multi-Layer Perceptron (MLP)
to evaluate VAMO against established baselines. The MLP architecture consisted of an input layer
receiving flattened 28×28 pixel images (784 dimensions), followed by two hidden layers with 32 and
16 units respectively, both employing ReLU activation functions. The final output layer comprised 10
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units corresponding to the digit classes, and the network was trained using a standard cross-entropy
loss function. Images were normalized to the range [0, 1].

Our proposed VAMO algorithm, configured with a single ZO query direction (q = 1), was bench-
marked against pure first-order (FO-SGD) [9] and pure zeroth-order methods (ZO-SGD and ZO-
SVRG) [5, 26]. For all methods, the mini-batch size was set to b = 4. Learning rates were
independently tuned for each method, selected from the range [10−4, 10−3] for ZO methods, and
[10−3, 10−2] for FO methods and VAMO. For VAMO with q = 1, we fixed the mixing coefficient at
α = 0.1 and used a ZO smoothing parameter of µ = 10−3. All models were trained for 10 epochs.

A.10 GPT2 Fine-Tuning on MNLI

Experiment Setup This experiment was designed to evaluate VAMO’s performance in the practical
and challenging context of fine-tuning large language models. We fine-tuned a pre-trained GPT-2
model [38] on the MultiNLI (MNLI) dataset [39] for a three-way natural language inference task.
The training set was subsampled to 256 examples and the validation set to 128 examples, with a
maximum input sequence length of 512 tokens. All models were fine-tuned for 1000 epochs, using
half-precision (FP16) training for computational efficiency. All experiments were conducted on a
single NVIDIA A100 GPU with 40 GB memory.

VAMO was benchmarked against several representative FO and ZO methods. To ensure a fair
comparison, we tuned the learning rates for FO methods in the range [10−4, 10−3], and for ZO
methods in the range [10−6, 10−5], based on their respective convergence behaviors. For the FO-SGD
method [9], we used an effective batch size of 32. For ZO methods such as ZO-SGD [26] and
ZO-SVRG [5], we adopted a smoothing parameter µ = 10−3 and q = 1 (two-point version) query
direction per iteration. In the primary comparison, VAMO was configured with a batch size of 32,
smoothing parameter µ = 10−3, and q = 1. The mixing coefficient was set to α = 0.05, based on
the analysis in Section 5.1. The number of inner loop iterations was set to m = 10. No learning rate
scheduler was applied to VAMO to isolate the effect of its variance reduction mechanism.

Role of m (Inner Loop Iterations): To study the impact of inner loop length m, we fixed α = 0.1,
q = 1, and µ = 10−3, and varied m ∈ {2, 5, 10}. These correspond to different frequencies of ZO
checkpointing. We report the final validation accuracy after 1000 epochs to evaluate the trade-off
between variance reduction effectiveness and ZO query overhead. Results are shown in Figure 3a.

Role of α (Mixing Coefficient): We varied α ∈ {0.05, 0.1, 0.15, 0.2} to investigate how strongly
ZO information should be incorporated at SVRG checkpoints. During these runs, other VAMO
parameters were fixed. As shown in Figure 3b, under our experimental settings, we found that a
moderate value of α = 0.05 achieved a favorable trade-off between fast convergence and robustness
to ZO estimation noise, consistent with the analysis presented in Section 5.1.
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Figure 3: The effects of inner loop iterations m and mixing coefficient α on the performance of
VAMO for fine-tuning GPT-2 on MNLI.
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